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Summary: Objective sleepiness evaluation is essential for the effect analysis of 
countermeasures for driver sleepiness, such as in-car stimulants. Furthermore, 
measuring drivers’ sleepiness in simulator studies also becomes important when 
investigating causes for task-related sleepiness, for example driving on monotonous 
routes, which requires little driver engagement. To evaluate driver sleepiness and 
the effect of countermeasures, we developed a model for predicting sleepiness 
using both simple logistic and linear regression of heart rate variability, skin 
conductance and pupil diameter. The algorithm was trained and tested with data 
from 88 participants in driving simulator studies. A prediction accuracy of 77% was 
achieved and the model’s sensitivity to thermal stimulation was shown. 

 
INTRODUCTION 
 
In the last decades, driver fatigue theories (Lal & Craig, 2001; May & Baldwin, 2009; van Veen 
et al., 2014) have been developed that distinguish different types of fatigue. Most theories 
differentiate task-related (TR) and sleep-related (SR) fatigue. TR fatigue can be due to task 
overload or underload. The latter one is also referred to as cognitive sleepiness. This 
differentiation becomes important when considering countermeasures for driver fatigue, as the 
literature reviews of May & Baldwin (2009) and van Veen et al. (2014) propose various 
treatments for different fatigue types. In the case of TR fatigue due to monotony, counter- 
measures include a variety of in-car stimulations. To research driving comfort, studies have been 
conducted investigating these countermeasures (Desmond & Matthews, 1997; van Veen, 2016).   
 
A tool for measuring sleepiness when investigating driver fatigue and the effect of different 
stimuli in experimental settings, is subjective questionnaires (e.g. Karolinska Sleepiness Scale, 
KSS). Questionnaires can only be asked, however, at discrete times, preventing a continuous 
analysis of sleepiness. Furthermore, listening and answering questionnaires has an awakening 
effect on the driver, which is often undesirable in driver sleepiness research. 
 
A different tool for measuring sleepiness is classification algorithms. Patel et al. (2011) for 
example describe a neural network classifying sleepiness with 90% accuracy based on drivers’ 
ECG (electrocardiogram) data. Friedrichs & Yang (2010) and Hu & Zheng (2009) report 
accuracies of 83% when differentiating three degrees of sleepiness based on eye data. These 
algorithms have been developed using data from sleep-deprived drivers, hence these are 
detecting SR fatigue. Another model, from Igasaki et al. (2015), uses data of non-sleep-deprived 
drivers. Their logistic regression based on heart rate variability (HRV) measures and respiratory 
features yields 81% detection accuracy, however, it was only generated with data from eight 
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male drivers. None of the above studies attempted to model sensitivity to in-car sleepiness 
countermeasures. 
 
We propose an algorithm that can be used as a tool for continuously evaluating driver sleepiness 
in simulator studies with a focus on TR sleepiness caused by monotonous driving. The training 
data were generated by means of a secondary data analysis of three driving simulator 
experiments investigating in-car countermeasures on the driver’s state. Our leading research 
questions are: 
RQ1: How accurately can the algorithm detect cognitive sleepiness in an unknown driver? 
RQ2: Can the algorithm detect changes in sleepiness induced by countermeasures? 
 
To answer these questions, this paper first describes how training data were collected from three 
simulator studies and the selection of features indicating sleepiness. Second, the algorithm, 
consisting of a cascaded logistic and linear regression model, is detailed with its quality factors. 
Finally, our research questions are discussed and the applicational limitations are reflected on.   
 
METHOD 
 
Experimental Designs 
 
A series of driving simulator experiments provided the data for the training and testing of the 
sleepiness classification. The primary aim of these pilot experiments was the investigation of 
countermeasures for critical driver states. The purpose of this secondary data analysis is the 
modeling of sleepiness caused by task underload. Table 1 shows a description of the monotonous 
highway drives, information on sample sizes and a description of the treatment. 
 
The first experiment included a 24 min. long monotonous drive, visualized in Table 1. After 14 
min. and at the end of the drive, participants answered the Stanford Sleepiness Scale (SSS). A 
countermeasure was applied between min. 20 and 23 that consisted of a combination of orange 
light from the car ceiling, scent, rhythmic sound and an increased fan intensity of the AC 
(COMB). The investigator started these in-car settings via remote control. In our second study 
(Schmidt et al., 2017), each subject drove two identical highway routes for 26 min. In one of the 
drives, cooling at 17°C (COOL) was applied between min. 20 and 26. Subjects evaluated their 
sleepiness after 6, 16 and 26 min. with the KSS. The third experiment included an 18 min. long 
drive with no intervention (CONTROL). At the end of the drive, the participants ranked their 
subjective sleepiness with the SSS.  
 
All drives were highway drives with very little traffic. Based on the observations of Schmidt et 
al. (2016) who investigated the possibility to induce cognitive sleepiness by means of traffic 
scenarios, it was concluded that 17 min. of monotonous driving in a simulator is sufficient to 
evoke high SSS ratings. The test vehicle was a street-legal car, placed in a static driving 
simulator with a curved screen providing a 220° view. Two monitors facing the side mirrors 
placed behind the car and a rear mirror display simulated a rear view. For each of the three 
experiments, 50 subjects were invited. All 150 subjects maintained their regular sleep schedule. 
Of those, n=28 datasets were excluded from analysis due to sensor failure or simulator sickness. 
ECG and skin conductance level (SCL) were measured with medical sensors (g.tech, Austria) 
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with a sampling frequency of 512 Hz. Gaze coordinates and pupil diameter of each eye were 
recorded at 60 Hz using a remote eye tracker (Tobii, Sweden). 
 

Table 1. Overview of simulator drives used for algorithm development 

Date Sample Sleepiness intervention 
Study I, Dec. 2015 n=36 (♂ 25, ♀ 11), age 31.3±9.8  COMB: combination of light, sound, scent and climate in min. 20-23 

 
Study II, Feb. 2016 n=44 (♂ 31, ♀ 13), age 33.0±11.4  COOL: climate change in min. 20-26 

 

Study III, Aug. 2016 n=42 (♂ 33, ♀ 9), age 30.7±8.7  None, CONTROL: control condition 

 
 

 
Signal Processing 
 
Predictor variables. The data were processed and analyzed using Matlab 2013b and the 
algorithm was developed with Weka 3.6.13 (Hall et al., 2009). Figure 1 visualizes the different 
processing steps. The time domain HRV measures SDNN (standard deviation of normal to 
normal intervals) and RMSSD (root mean square of successive differences) for the period of 3 
min. were extracted from the ECG recordings. Furthermore, a spectral analyses of a moving 3-
min. sequence of interbeat intervals was performed and the frequency domain HRV measures LF 
(low frequency component, 0.04-0.15 Hz), HF (high frequency component, 0.15-0.4 Hz) and 
total power were obtained. Pupil diameters of both eyes were averaged for each subject.  
 
To increase the classification accuracies, the features were further transformed. Instead of using 
absolute values, we found that the relative changes of features compared to the first driving 
minute (third minute respectively for HRV measures) yields better results. The subscript ‘rel’ in 
equations 1, 2 and 3 indicates the relative change of the parameters over time compared to their 
respective value at the beginning of the measurement. Furthermore, the exponents of SDNN, 
HFrel, total powerrel, SCLrel and diameterrel were adjusted. This transformation increases the 
kurtosis in their respective distributions up to 9 times and reduces the overall variability of the 
parameters. 
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rating (e.g. the KSS rating after 16 min. was matched with the features from the 16th min.). The 
classes “awake” and “sleepy” were formed by means of the subjective sleepiness rankings in the 
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following way: data observations with KSS-values of 1, 2, 3 and 4 as well as SSS-values of 1, 2 
and 3 formed class 1 – “awake”. Data observations with KSS-values of 8 and 9 as well as SSS-
values of 6 and 7 formed class 2 – “sleepy”. This way, a total data set of 171 observations from 
88 different drivers was generated. The dataset includes 85 observations of awake drivers and 86 
observations of tired drivers. An amount of 207 observations with mid-range KSS and SSS 
values was removed from the training and testing. 
 

 
Figure 1. Signal processing 

Algorithm 
 
The detection of sleepiness can be handled in two different ways: classification or regression. 
This is possible because the classes 1 and 2 do not only describe nominal classes (awake and 
sleepy) but can also serve as numeric values for the degree of sleepiness, allowing for regression 
approaches. Regression approaches often fail to model the individual differences in prediction 
problems because the prediction is often approximating the mean of all labels. Therefore, we 
chose a classification approach over regression in the first step to distinguish the separate classes. 
To improve the sensitivity of the prediction results to external stimuli, a linear regression model 
with the inputs diameterrel

 and the class values was developed in the second step.  
 
RESULTS 
 
After comparing several classification algorithms, we found that the logistic regression classifier 
performed the best in terms of classification accuracy. The logistic regression model was 
developed using a 10-fold-cross-validation on the 171 observations. The logistic regression 
function is given by equations (4) and (5) with a coefficient vector (a, b, c, d, e, f, g, h, i) of  
(8.4·10-5, 0.81, -0.84, 0.16, -6.5·10-7, 4.1·10-3, 4.6, -6.6, 0.45). The classification accuracy is 
77.19%, with a ROC area of 0.781 for both classes. Figure 2 shows that a total of 92 
observations were classified as awake, 79 as sleepy. The confusion matrix is shown in Table 2.  

	1	ݏݏ݈ܽܿ	݂	ݕݐ݈ܾܾ݅ܽݎ ൌ
1

1  exp	ሺെݔሻ
 (4) 

ݔ ൌ a ∙ ଶܰܰܦܵ  b ∙ ܦܵܵܯܴ  c ∙ ܨܪ  d ∙ ܨܪ
ଶ  e ∙  ܨܮ

f ∙ ݎ݁ݓܲ	݈ܽݐݐ
ିଵ  g ∙ ܴܵܩ

ଷ  h ∙ ݎ݁ݐ݁݉ܽ݅݀
ଶ  i 

(5) 

2	ݏݏ݈ܽܿ	݂	ݕݐ݈ܾܾ݅݅ܽݎ ൌ 1 െ  (6) 1	ݏݏ݈ܽܿ	݂	ݕݐ݈ܾܾ݅݅ܽݎ

Raw signals

skin conductance

ECG

pupil diameters

Features

3 min. 
window

Time domain:
SDNN
RMSSD
Frequency domain:
HF
LF
Total power

1 min. 
window

Temporal mean:
SCL

1 min. 
window

Temporal mean of 
average diameter of 
left and right pupil:
diameter

Further 
transformation

Simple 
logistic 

regression 
model

Classification

SDNN2

RMSSDrel

HFrel

HFrel
2

LF
Total powerrel

-1

SCLrel
3

diameterrel
2

diameterrel

Driver’s state
nominal

Class 1: 
awake

Class 2: 
sleepy

Linear 
regression 

model

Regression Driver’s state
numeric

Nominal 
to 

numeric

Transformation

Sleepiness 
level

ca. 1 -2



PROCEEDINGS of the Ninth International Driving Symposium on Human Factors in Driver Assessment, Training and Vehicle Design 

 

 288 

Even though the classification of cognitive sleepiness is fair, it is not sufficiently accurate to 
model the activation of the driver through the countermeasures because the class is either “1-
awake” or “2-sleepy”. Hence, the model does not represent any intermediate state, such as slight 
reductions in sleepiness due to in-car stimulation.  
 

Table 2. Confusion matrix of simple logistic 
regression 

Classified as → 1 2 
1 69 16 
2 23 63 

  

Table 3. Confusion matrix of hybrid logistic and linear 
regression 

Classified as → 1 2 
1 70 15 
2 24 62 

 

 
Figure 2. Histogram of predicted sleepiness with 

simple logistic regression 

 
Figure 3. Histogram of predicted sleepiness with 

hybrid logistic and linear regression  

Therefore, the model was improved by cascading a linear regression model after the logistic 
classifier, which reproduces such intermediate states. The classification result serves as input for 
the linear regression model, along with the relative change in pupil diameter. The pupil diameter 
was chosen as an input because it is a very sensitive measure of sympathetic activation and hence 
replicating slight changes of driver activation. The linear regression model for sleepiness was 
generated using a 10-fold-cross-validation. The regression function is given by equation (7) with 
a coefficient vector (j, k, l) of (0.45, -1.5, 0.8). The correlation coefficient of the regression 
model is r=0.53, p<.001. The classification accuracy of the rounded numeric sleepiness level is 
still 77.19%. Table 3 shows the new confusion matrix and Figure 3 the new distribution of 
predicted sleepiness levels.  
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A comparison of the distributions in Figure 2 and Figure 3 visualizes the effect of cascading the 
linear regression: The linear regression approximates the mean of all observations, which means 
that the two bars of Figure 2 move closer towards the mean of 1.5 in Figure 3. This hardly alters 
the classification accuracy (see Table 2 and Table 3), but allows for the detection of slight 
changes in sleepiness induced by external stimuli. If the linear regression would have been 
performed without the logistic classifier beforehand, the distribution of predictions would peak at 
1.5 and therefore, confuse sleepy and awake drivers. 
 
To evaluate the sensitivity of the proposed algorithms to changes in cognitive sleepiness due to 
stimulation, we compared the predicted sleepiness of the two drives “CONTROL” and “COOL” 
of the simulator study II. Figure 4 and 5 show the mean sleepiness of the 44 drivers for the 
logistic and the hybrid logistic and linear regression respectively and it can be seen that 
sleepiness increased over the course of both drives. The logistic regression model (Figure 4) fails 
to model the slight reduction in sleepiness due to the cooling treatment because there are hardly 
significant differences between the “CONTROL” and “COOL” condition in min. 20 to 26. For 
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the hybrid regression approach (Figure 5), the t-test results for each driving min. yield 
statistically significant differences between the two conditions in the 21st (p<0.003), 23rd 

(p<0.049), 24th (p<0.034), 25th (p<0.023) and 26th (p<0.001) min., in which cooling was applied. 
The graph also shows that there is a trend for decreased sleepiness after 6 and 16 min., when the 
drivers responded to the KSS, which had an awakening effect.  

  
Figure 4. Mean and standard error of predicted 
sleepiness through logistic regression with t-test 

results between conditions 

Figure 5. Mean and standard error of predicted 
sleepiness through hybrid logistic and linear 

regression with t-test results between conditions 
 
CONCLUSION 
 
Based on the presented results, the research questions can be answered: 
A1: The cognitive sleepiness of car simulator drivers can be detected with an accuracy of 
77.19% using ECG, SCL and pupil diameter as inputs. The proposed algorithm achieves a fair 
classification accuracy, taking into account that the data were collected from non-sleep-deprived 
drivers. Better performing algorithms with similar signal input requirements found in the 
literature were trained with data from sleep-deprived drivers. It is questionable, however, 
whether these algorithms can also predict TR sleepiness as accurately. 
A2: The algorithm detects changes in sleepiness of the sample in our second study which were 
induced by thermal stimulation. Furthermore, the predicted values also reflect the awakening 
effect when the driver is answering the KSS. Though, when applying the model for the 
evaluation of sleepiness countermeasures, we recommend having a large sample to overcome the 
imprecision of the prediction. 
 
When comparing the classification results of the logistic regression with the results of the hybrid 
logistic and linear regression, there is no improvement in classification accuracy by cascading 
the linear regression in the hybrid model. This additional step, however, reproduces slight 
changes in sleepiness by allowing for continuous sleepiness values. Furthermore, this linear 
regression is strongly influenced by the relative change in pupil diameter, which is a very 
sensitive measure of activation. 
 
The proposed algorithm will perform well only if the light settings are kept constant during the 
experiment. The reason is that changes in the brightness cause pupillary restrictions unrelated to 
an increase in sleepiness and would therefore skew both classification and regression results. For 
this reason, the algorithm is not suited to evaluate light as an intervening stimulant for sleepy 
drivers. Since we trained the algorithm with the extreme KSS- and SSS-values, the reported 
accuracy can only be guaranteed for awake or sleepy ratings. For intermediate values (5, 6, 7 for 
KSS and 4, 5 for SSS) the logistic regression probabilities are close to an equal likelihood for 
both classes, increasing the risk of misclassifications.  
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Taking both the accuracy and sensitivity of the regression model into account, the algorithm is a 
suitable tool for continuously evaluating TR sleepiness due to monotony in driving simulator 
studies. The model can also serve as an objective measure for the effectiveness of 
countermeasures, such as in-car stimulants. In further studies, we would like to evaluate the 
performance of the sleepiness prediction for repeated and even cooler thermal stimuli. Moreover, 
the algorithm should also be tested for different causes of TR sleepiness, e.g. automated driving. 
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